Tornqvist indexing in \mathbf{R}

Tqtools package

Mike Jadoo / Economist Peter B. Meyer / Research Economist

Office of Productivity and Technology,
U.S. Bureau of Labor Statistics

Conference of Statistical Practice
New Orleans, 2/15/2019

1 - U.S. BUREAU OF LABOR STATISTICS • bls.gov

BLS

Motivation

Provide routines to help individuals to properly aggregate indices using the Tornqvist method.

Vocabulary

Productivity:
-Labor
-Multifactor

NAICS

Nonfarm business sector
Cost of production
Measures
Index :

> -Price
-Quantity
3 - U.S. Bureau of Labor Statistics • bls.gov

Vocabulary

Productivity: a measure of efficiency which compares the amount of goods and services produced (output) with the amount of inputs used.

Vocabulary

Labor Productivity $=\frac{\text { Output }}{\text { Hours Worked }}$

Multifactor Productivity

$$
=\frac{\text { Output }}{\text { Combination of Labor and Capital Inputs }}
$$

Vocabulary

NAICS: North American Industry Classification System is the standard used by Federal statistical agencies for classifying business establishments
-Sector: 2-digit
-Subsector: 3-digit
-Industry group- 4-digit

Level	NAICS CODE	Description
Sector	$44-45$	Retail Trade
Subsector	441	Motor Vehicle and Parts dealer
Industry Group	4412	Other Motor Vehicle Dealers

6 - U.S. Bureau of Labor Statistics • bls.gov

Vocabulary

Nonfarm business sector: includes about 75\% of U.S. economy. It excludes general government, farms, and household work.

Vocabulary

Cost of production: cost of producing an item in an industry in current dollars. These can be used as weights in our Index formula.

Measures: Our quantification of a particular concept measured over time

Vocabulary

Index: a statistical representation of a level over time for a particular measure using a base year.

Price index: measurement of price movements in a numerical series

Quantity index: represents a real measure of a particular input or output.

Cost $=$ Price * Quantity and Price $=\frac{\text { Cost }}{\text { Quantity }}$

Agenda

\square-Overview of productivity measures
--Common Index formulas
\square-How Tornqvist is used
--Demonstrations

1. Information capital measure
2. Manufacturing sector aggregation

BLS

Overview of productivity measures

Why is Productivity Growth Important?

■ Enables higher living standards

- Source of potential gains in national income

■ Key to competitiveness
■ Used in employment projections

Productivity

- Quarterly Labor Productivity
- Annual Labor Productivity
- Annual Multifactor Productivity
- Business and Nonfarm Business Sectors
- Manufacturing Sectors
- Nonfinancial Corporations
- Manufacturing and Mining Industries
- Services Industries
- Wholesale and Retail Trade Industries
- Private Business
- Nonfarm Business
- Manufacturing
- 60 3-digit NAICS industries

Overview of productivity measures

Common Index formulas

Advantages of Using Indices

- Detailed input data have different units, but the indexes have growth rates, which can be compared.
- The relevant production theory is rearranged to address growth rates only.
- A flexible index function is a good approximation to any smooth production function.
- Tornqvist index matches the translog production function

■ Therefore it is not necessary to specify a production function, and BLS Productivity Office does not pick one.

- Capital, labor, and intermediate inputs are computed in indexes

Economic Flows

Consumer Price Index

- Work for wages
- Buy products

Factor Market

- Buy factors of production
- Sell products

Economic Flows

Land, capital, labor
Tornqvist/ Laspeyres

- Work for wages
- Buy products

Chained Laspeyres

- Buy factors of production
- Sell products

Firms

Common Index formulas

Laspeyres

$$
I_{L}^{0 \rightarrow 1}=\frac{\sum_{i} q_{i}^{0} * p_{i}^{1}}{\sum_{i} q_{i}^{0} * p_{i}^{0}}=\sum_{i} s_{i}^{0} *\left(\frac{p_{i}^{1}}{p_{i}^{0}}\right) \text { where } s_{i}^{t}=\frac{p_{i}^{t} * q_{i}^{t}}{\sum_{j} p_{j}^{t} * q_{j}^{t}}
$$

Paasche

$$
I_{P}^{0 \rightarrow 1}=\frac{\sum_{i} q_{i}^{1} * p_{i}^{1}}{\sum_{i} q_{i}^{1} * p_{i}^{0}}=\left\{\sum_{i} s_{i}^{1} *\left(\frac{p_{i}^{1}}{p_{i}^{0}}\right)^{-1}\right\}^{-1}
$$

Common Index formulas

Fisher

$$
I_{F}^{0 \rightarrow 1}=\sqrt{I_{L}^{0 \rightarrow 1} * I_{P}^{0 \rightarrow 1}}
$$

Tornqvist

These are "chained" consecutively.

Tornqvist step-by-step

Quantity:

Real dollar Production (based 2009)	2007	2008	2009	2010	2011	2012
Description						
computers equipment	82.087	92.123	100.000	106.682	112.174	116.482
communications equipment	88.651	95.244	100.000	104.228	108.779	113.074
Other equipment	96.484	98.914	100.000	100.449	101.258	102.402

Log change production

Change in natural log Production	2007	2008	2009	2010	$2011 \mid$
Description					
computers equipment		11.5%	8.2%	6.5%	5.0%
communications equipment	7.2%	4.9%	4.1%	4.3%	3.9%
Other equipment		2.5%	1.1%	0.4%	0.8%

Weights:

Current dollar production cost	2007	2008	2009	2010	2011	2012
Description						
computers equipment	108.094	104.657	100.392	97.303	96.628	94.645
communications equipment	141.665	149.915	134.442	137.370	128.727	138.034
Other equipment	101.840	105.084	100.974	100.363	98.439	102.037
Total production Cost:	351.599	359.656	335.808	335.036	323.794	334.716

Tornawist ster-by-ster

Share Weights:

Shares of current dollar cost	2007	2008	2009	2010	2011	2012
Description						
computers equipment	31\%	29\%	30\%	29\%	30\%	28\%
communications equipment	40\%	42\%	40\%	41\%	40\%	41\%
Other equipment	29\%	29\%	30\%	30\%	30\%	30\%
Checking the shares (must sum to 100\%)	100\%	100\%	100\%	100\%	100\%	100\%

2 year average shares of cost	2007	2008	2009	2010	2011	2012
Description						
computers equipment		0.299	0.295	0.295	0.294	0.291
communications equipment		0.410	0.409	0.405	0.404	0.405
Other equipment		0.291	0.296	0.300	0.302	0.304

Tornqvist step-by-step

Shares * Log Change

Average shares * Change in natural \log	2007	2008	2009	2010	2011	2012
Description						
computers equipment		0.035	0.024	0.019	0.015	0.011
communications equipment		0.029	0.020	0.017	0.017	0.016
Other equipment		0.007	0.003	0.001	0.002	0.003

Sum and chain

Sum data together for aggregate series	2007	2008	2009	2010	2011	2012
Description						
Information Capital		0.071	0.047	0.037	0.034	0.030
(cumlative product cal.)	1	1.074	1.126	1.168	1.209	1.246
Quantity index Information Capital	0.888	0.954	1.000	1.038	1.074	1.107

Common Index formulas

How the Tornqvist Index is used in productivity theory

How it's used

- Aggregating to create an industry sector
- Combine multiple categories in a particular industry(s)
- Problematic cases for the Tornqvist

Aggregating to create an industry sector

Literature on the theory of index numbers has shown that Tornqvist has desirable properties.

- Exact index for translog structure of production -Used to combine indices of inputs (Capital and Labor)
*Dean, Harper, Sherwood (1996) page 185

Combine multiple categories in a particular industry(s)

For the same reasons mentioned before the Tornqvist index is used.

Relevant theory only uses growth rates of quantities and prices.

How the Tornqvist Index is used in productivity theory

Demonstrations

1. Information capital measure

2. Manufacturing sector aggregation

R package Dependencies

dplyr
tidyr

R package Dependencies

mutate ()
select ()
arrange()
group_by()
rename ()
Left_join()
Inner_join()

R package Dependencies

dplyr

```
mutate( ) - create new variables
select( )- keep certain variables
arrange()- sort data frames
group_by()- group data frame for
    following calculations
rename() - rename variables
left_join()- merge tables toward
                                    the left most data frame
inner_join()- returns everything
```

gather() - transpose

R package Dependencies

```
mutate(df, new_var= old_var*9 )
select(df, var1, var2, var3)
arrange(df, var1, var2, var3)
by_cyl<-group_by(df, var1 )
by_cyl2<-summarize(by_cyl, ....)
rename(df, var_newname=varl)
left_join(var1, var2, by=key)
inner_join(var1, var2, by=key)
```


R package Dependencies

gather(df, key="key_var" , value)

YEAR	Red	Green
2010	50	80
2011	40	100

VAR	2010	$\mathbf{2 0 1 1}$
Red	50	40
Green	80	100

Information capital measure

Aggregate multiple measures for each industry to form a new information capital time series.

tornqvist_index_m (quantity_var,cost_var,base_year)

36 - U.S. Bureau of Labor Statistics • bls.gov
BLS

tornqvist_index_m (quantity_var,cost_var,base_year)

Data frame

Year	Computers	Communication	Other	Computers_c	Communication_c	Other_c	sector	
$\mathbf{1}$	1987	1.664	19.418	55.062	43.700	44.922	46.803	PG
$\mathbf{2}$	1988	2.039	20.740	56.023	46.765	48.841	48.501	PG
$\mathbf{3}$	1989	2.437	22.068	57.213	56.970	57.428	50.984	PG
$\mathbf{4}$	1990	2.784	23.291	58.508	60.862	61.438	53.932	PG
$\mathbf{5}$	1991	3.043	24.373	59.420	61.666	62.820	54.527	PG
$\mathbf{6}$	1992	3.389	25.417	60.604	63.538	62.939	54.407	PG
$\mathbf{7}$	1993	3.956	26.595	62.713	65.874	66.600	58.315	PG
$\mathbf{8}$	1994	4.785	28.111	65.570	68.374	72.334	64.496	PG
$\mathbf{9}$	1995	6.160	30.107	68.478	72.306	80.288	69.773	PG
$\mathbf{1 0}$	1996	8.463	32.552	71.459	83.472	84.082	72.919	PG
$\mathbf{1 1}$	1997	11.976	35.487	74.485	92.559	84.584	74.735	PG
$\mathbf{1 2}$	1998	17.150	39.007	77.385	104.123	88.189	76.161	PG
$\mathbf{1 3}$	1999	24.688	43.605	79.517	114.958	93.516	79.685	PG
$\mathbf{1 4}$	2000	33.839	49.997	80.761	121.164	101.422	81.276	PG

Pre-processing

```
df_cost<-select(df, Computers=Computers_c ,
Communication=Communication_c, Other=Other_c, sector, Year)
df_qty<-select(df, Computers=Computers,
Communication=Communication, Other= Other, sector, Year)
```

```
tornqvist_index_m<-function(quantity_var,cost_var,base_year){
{
#count the number of assets to be aggregated in the TQ
colmn<-ncol(cost_var)
totvars<-colmn-2
# total number of variables is stored in object totvars
# minus 2- remove year and sector
#block 1
df_cost_t<-gather(cost_var, ems,cost, 1:totvars)
df_qty_t<-gather(quantity_var, ems,qty, 1:totvars)
all<-inner_join(df_cost_t,df_qty_t, by= c("sector"="sector", "ems"="ems","Year"="Year"))
sort_all<-arrange(all, sector, Year)
total_cost<-aggregate(cost~sector+Year, sort_all,sum)
inner_join(sort_all,total_cost, by= c("sector"="sector", "Year"="Year"))%>%mutate(value_share=cost.x/cost.y) ->total_cost_2
tornqvist_data_1<-arrange(total_cost_2, sector,ems, Year)
tornqvist_data_2<-tornqvist_data_1%>%group_by(sector,ems)%>%mutate(lag_vshare=dplyr::lag(value_share, n=1, default=NA),
                                    lag qty=dplyr::lag(qty, n=1, default=NA)
tornqvist_data_3<-tornqvist_data_2%>%group_by(sector,ems,Year)%>% mutate(ave_value_share = ((value_share + lag_vshare )* 0.5),
                                    log_quantity = log(qty) - log (lag_qty),
                                    Product = log_quantity * ave_value_share )
```

tornqvist_data_4<-tornqvist_data_3\%>\%select(Year, ems, sector, Product, cost.y)
\#block 2
tornqvist_5<-tornqvist_data_4\%>\%group_by(sector, Year) \% > \% summarise (quantity_1=sum(Product), vp=mean(cost.y))
tornqvist_6<-tornqvist_ $5 \%>\%$ group_by(sector) $\%>\%$ mutate $\left(Q=\exp \left(q u a n t i t y _1\right), Q=i f _e l s e(i s . n a(Q), 1, Q), q _c u m u l a t e=\operatorname{cumprod}(Q)\right)$
ty<-tornqvist $6[$ tornqvist_ $6 \$ Y e a r==$ base_year,] $\%$ \%select (sector, Year, q_cumulate) $\%>\%$ rename (yrbaseyrq_cumul=q_cumulate)
tornqvist_7<-merge(tornqvist_6,ty, by="sector", all=TRUE)\%>\%mutate(quantity=q_cumulate/yrbaseyrq_cumul)\%>\%
select(-Year.y,-yrbaseyrq_cumul,-Q,-quantity_1,-q_cumulate) \% $>\%$ rename (Year=Year.x) $\%>$ mutate (price=vp/quantity)
\}
return(tornqvist 7)
\}

41 - U.S. Bureau of Labor Statistics • bls.gov

```
tornqvist_index_m<-function(quantity_var,cost_var,base_year){
    {
    [ . . . . . . . CODE . . . . . . .]
    #block 1
        df_cost_t<-gather(cost_var, ems,cost, 1:totvars)
    df_qty_t<-gather(quantity_var, ems,qty, 1:totvars)
    all<-inner_join(df_cost_t,df_qty_t, by= c("sector"="sector", "ems"="ems","Year"="Year"))
    sort_all<-arrange(all, sector, Year)
    total_cost<-aggregate(cost~sector+Year, sort_all,sum)
```

inner_join(sort_all,total_cost, by= c("sector"="sector", "Year"="Year")) \%>\%mutate(value_share=cost.x/cost.y)-
>total_cost_2
tornqvist_data_1<-arrange(total_cost_2, sector,ems, Year)
tornqvist_data_2<-tornqvist_data_1\%>\%group_by(sector,ems) \%>\%mutate(lag_vshare=dplyr::lag(value_share, n=1,
default=NA),
lag_qty=dplyr::lag(qty, n=1, default=NA))
tornqvist_data_3<-tornqvist_data_2\%>\%group_by(sector,ems,Year) \%>\% mutate(ave_value_share = ((value_share +
lag_vshare) * 0. $\overline{5}$),
log_quantity $=\log (q t y)-\log \left(l a g _q t y\right)$,
Product = log_quantity * ave_value_share)
tornqvist_data_4<-tornqvist_data_3\%>\%select(Year, ems, sector, Product, cost.y)

```
tornqvist_index_m<-function(quantity_var,cost_var,base_year){
    {
    [ . . . . . . . CODE . . . . . . . ]
    #block 1
a................ #code from before .......................................................
~
inner_join(sort_all,total_cost, by= c("sector"="sector",
"Year"="Year")) %>%mutate(value_share=cost.x/cost.y) ->total_cost_2
tornqvist_data_1<-arrange(total_cost_2, sector,ems, Year)
tornqvist_data_2<-tornqvist_data_1%>%group_by(sector,ems)%>%mutate(lag_vshare=dplyr::lag(value_share,
n=1, default=NA), lag_qty=dplyr::lag(qty, n=1, default=NA))
tornqvist_data_3<-tornqvist_data_2%>%group_by(sector,ems,Year)%>% mutate(ave_value_share =
((value_share + lag_vshare )* 0.5), log_quantity = log(qty) - log (lag_qty),
Product = log_quantity * ave_value_share )
tornqvist_data_4<-tornqvist_data_3%>%select(Year, ems, sector, Product,cost.y)
```

```
tornqvist_index_m<-function(quantity_var,cost_var,base_year){
    {
    #code from before
```

\qquad
\#block 2

```
tornqvist_5<-tornqvist_data_4%>%group_by(sector,Year) %>%
summarise(quantity_1=sum(Product), vp=mean(cost.y))
    tornqvist_6<-tornqvist_5%>%group_by(sector)%>% mutate(Q = exp(quantity_1),
Q=if_else(is.na(Q), 1,Q),q_cumulate = cumprod(Q))
ty<-tornqvist_6[tornqvist_6$Year == base_year, ] %>%select(sector,
Year,q_cumulate) %>%rename(yrbaseyrq_cumul=q_cumulate)
tornqvist_7<-merge(tornqvist_6,ty, by="sector", all=TRUE)%>%mutate(quantity=q_cumulate/yrbaseyrq_cumul)%>%
        select(-Year.y,-yrbaseyrq_cumul,-Q,_quantity_1,-q_cumulate)%>%rename(Year=Year.x)%>%mutate(price=vp/quantity)
}
    return(tornqvist_7)
}
```

44 - U.S. Bureau of Labor Statistics • bls.gov
BLS
tornqvist_index_m<-function(quantity_var, cost_var,base_year) \{
\{
\qquad \#code from before \qquad

\#block 2

tornqvist_5<-tornqvist_data_ $4 \%>\%$ group_by (sector, Year) $\%>\%$ summarise (quantity_1=sum(Product), $\mathrm{vp}=$ mean (cost.y))
tornqvist_6<-tornqvist_5\%>\%group_by(sector) \% > \% mutate (Q = exp (quantity_1) , Q=if_else(is.na(Q), $1, Q)$, q_cumulate $=$ cumprod (Q))

```
ty<-tornqvist_6[tornqvist_6$Year == base_year, ] %>%select(sector,
```

Year, q_cumulate) \% \% \%rename (yrbaseyrq_cumul=q_cumulate)

```
tornqvist_7<-merge(tornqvist_6,ty, by="sector",
all=TRUE) % >%mutate(quantity=q_cumulate/yrbaseyrq_cumul)%>%
```

select(-Year.y,-yrbaseyrq_cumul,-Q, -quantity_1,-
q_cumulate) $\%$ \% rename (Year=Year.x) $\%>\%$ mutate (price=vp/quantity)
\}
return(tornqvist_7)
\}

Data frame

Comp + Comm + Other (PB)

${ }^{\wedge} \mathrm{V}$		Computers	Communication	Other	Compters.	Communiction,	Others	sector
1	1987	1.664	19418	55062	43700	4.92	46883	PG
2	1988	2039	20.74	56023	46.65	48841	48501	PG
	1989	24.37	22068	57.13	56970	57428	50984	PG
	190	2784	23.29	58508	60856	61.138	53932	PG
	1991	3.043	24.373	59420	61.566	6288	54.527	PG
	1992	3339	25.417	60.004	63.388	62399	54407	PG
	1993	3956	26.595	62713	65884	66600	588315	PG
	199	4.785	28111	65.50	68374	12334	64496	PG
	1995	6.150	30107	68478	72336	80.88	69773	P6
	1996	8463	32552	71.59	83472	84002	12919	P6
	197	11976	33487	74.45	22559	84.584	74.735	PG
	1988	17.50	39007	77335	104123	88.89	76.616	PG
	1999	24.688	43.005	79.517	114958	933516	79.655	PG
	200	33839	49997	88.761	121.164	101422	81.276	

Information capital (PB)

	sector	Year	vp	quantity	price
1	PG	1987	135.425	0.1093872	1238.033
2	PG	1988	144.107	0.1201389	1199.504
3	PG	1989	165.382	0.1311526	1260.989
4	PG	1990	176.232	0.1408814	1250.924
5	PG	1991	179.013	0.1482953	1207.138
6	PG	1992	180.884	0.1571651	1150.917
7	PG	1993	190.789	0.1702614	1120.565
8	PG	1994	205.204	0.1877538	1092.942
9	PG	1995	222.367	0.2119566	1049.116
10	PG	1996	240.473	0.2456828	978.7947
11	PG	1997	251.878	0.2900702	868.3347
12	PG	1998	268.473	0.3466215	774.5423
13	PG	1999	288.159	0.4180275	689.3303
14	PG	2000	303.862	0.4979744	610.196
15	PG	2001	308.538	0.5696786	541.6001
16	PG	2002	300.944	0.620681	484.861
17	PG	2003	308.713	0.663964	464.9544
18	PG	2004	316.516	0.7100554	445.7624
19	PG	2005	349.197	0.7595634	459.7338
20	PG	2006	358.324	0.8186554	437.6982

Manufacturing sector aggregation

Aggregate multiple different industries (NAICS) into one super-sector.

```
tornqvist_index_ind(input,base_year,NAME)
```

NAICS 31..

NAICS 32..

Energy

Manufacturing sector

tornqvist_index_ind(input,base_year,NAME)

Pre-processing

```
input<-select(df, ce , qex, naics, year)
```

```
tornqvist_index_ind<-function(input,base_year,NAME) {
{
df_2<-data.frame(input)%>%arrange(year)
#block 1
#get the total cost of all the industries
df_3<-aggregate(ce~year, df_2,sum)%>%rename(total_cost=ce)
df_4<-left_join(input2,df_3, by= c("year"="year"))%>%mutate(value_share=ce/total_cost)
df_5<-df_4%>%arrange(naics,year)
df_6<-df_5%>%group_by(naics)%>%mutate(lag_vshare=lag(value_share),
                                    lag_qex=lag(qex), ave_valueshare = ((value_share + lag_vshare)*0.5) ,
                                    Log qty chg = log(qex) - log(lag qex),
                                    Product = Log_qty_chg * ave_valueshare)
df_7<-df_6%>%arrange(year,naics)
#block 2
    #get the total contributions of all industries
    df_8<-aggregate(Product~year, df_7,sum)%>%rename(TQ=Product)%>%
        mutate(quant =exp(TQ))
    df_9<-left_join(df_3,df_8, by= c("year"="year"))
    df_10<-select(df_9, year , total_cost, quant)%>%
        mutate(quant= ifelse(is.na(quant),1,quant), q cumulate = cumprod(quant),NAICS=NAME)
    df_11<-df_10[df_10$year == base_year, ]%>%select( year,q_cumulate)%>%
        rename(yrbaseyrq cumul=q cumulate)%>%mutate (NAICS=NAME)
    tq 1<-merge(df 10,df 11,by="NAICS",all=TRUE)%>%
        mutate(quant_index=q_cumulate/yrbaseyrq_cumul)%>%
    select(-year.y,-yrbaseyrq_cumul,_quant,_q_cumulate)%>%rename(year=year.x)%>%mutate(price=total_cost/quant_index)
}
return(tq_1)
}
51 - U.S. Bureau of Labor Statistics • bls.gov
```

BLS

```
tornqvist_index_ind<-function(input,base_year,NAME) {
    {
    df_2<-data.frame(input)%>%arrange(year)
        #block 1
            #get the total cost of all the industries
df_3<-aggregate(ce~year, df_2,sum)%>%rename(total_cost=ce)
df_4<-left_join(input2,df_3, by= c("year"="year"))%>%mutate(value_share=ce/total_cost)
df_5<-df_4%>%arrange(naics,year)
    df_6<-df_5%>%group_by(naics) %>%mutate(lag_vshare=lag(value_share),
                                lag_qex=lag(qex), ave_valueshare = ((value_share +
lag_vshare)*0.5) ,
                                Log_qty_chg = log(qex) - log(lag_qex),
                                Product = Log_qty_chg * ave_valueshare)
    df_7<-df_6%>%arrange(year,naics)
```

```
tornqvist_index_ind<-function(input,base_year,NAME) {
    {
df_2<-data.frame(input)%>%arrange(year)
#block 1
#get the total cost of all the industries
df_3<-aggregate(ce~year, df_2,sum) %>%rename(total_cost=ce)
df_4<-left_join(input2,df_3, by= c("year"="year"))%>%mutate(value_share=ce/total_cost)
df_5<-df_4%>%arrange(naics,year)
    df_6<-df_5%>%group_by(naics)%>%mutate(lag_vshare=lag(value_share),
        lag_qex=lag(qex), ave_valueshare = ((value_share + lag_vshare)*0.5) ,
            Log_qty_chg = log(qex) - log(lag_qex),
                    Product = Log_qty_chg * ave_valueshare)
    df_7<-df_6%>%arrange(year,naics)
```

```
tornqvist_index_ind<-function(input,base_year,NAME) {
```

 \{
 \#code from before \qquad \ldots.

\#block 2

\#get the total contributions of all industries
df_ $8<-$ aggregate (Product~year, df_7,sum) \% $\%$ rename (TQ=Product) $\%>\%$
mutate (quant $=\exp (T Q)$)
df_9<-left_join(df_3,df_8, by= c("year"="year"))
df_10<-select(df_9, year , total_cost, quant) \% > \%
mutate (quant= ifelse(is.na(quant), 1, quant), q_cumulate = cumprod(quant), NAICS=NAME)
$d f _11<-d f _10\left[d f _10 \$ y e a r==\right.$ base_year, $] \%>\%$ select (year, q_cumulate) $\%>\%$
rename (yrbaseyrq_cumul=q_cumulate) $\%>$ \%mutate (NAICS=NAME)
tq_1<-merge (df_10,df_11,by="NAICS", all=TRUE) \%>\%
mutate (quant_index=q_cumulate/yrbaseyrq_cumul) $\%>\%$
select(-year.y,-yrbaseyrq_cumul,-quant,-
q_cumulate) \% $>\%$ rename (year=year. x) \% $>\%$ mutate (price=total_cost/quant_index)
\}
return(tq_1)
\}

```
tornqvist_index_ind<-function(input,base_year,NAME) {
```

 \{
 \qquad
\qquad

\#block 2

\#get the total contributions of all industries
df_8<-aggregate (Product~year, df_7,sum) \% $>\%$ rename (TQ=Product) $\%>\%$
mutate (quant $=\exp (T Q))$
df_9<-left_join(df_3,df_8, by= c("year"="year"))
$d f _10<-$ select (df_9, year , total_cost, quant) \% $>\%$
mutate (quant= ifelse(is.na(quant), $\left.1, q u a n t), ~ q _c u m u l a t e=c u m p r o d(q u a n t), N A I C S=N A M E\right)$

```
df_11<-df_10[df_10$year == base_year, ]%>%select( year,q_cumulate) % >%
```

rename (yrbaseyrq_cumul=q_cumulate) $\%>\% m u t a t e(N A I C S=N A M E)$
tq_1<-merge (df_10,df_11,by="NAICS", all=TRUE) \%>\%mutate (quant_index=q_cumulate/yrbaseyrq_cumul) \%>\%
select (-year.y,-yrbaseyrq_cumul,-quant,
-q_cumulate) $\%>\%$ rename (year=year.x) $\%>\% m u t a t e\left(p r i c e=t o t a l _c o s t / q u a n t _i n d e x\right) ~$
\}
return(tq_1)
\}

Data fran e

NAICS 31-33

$\boldsymbol{4}$	ce	qex	naics	year
$\mathbf{1}$	2064.2662	1.4035696	I361	1987
$\mathbf{2}$	1893.4473	1.3855377	I361	1988
$\mathbf{3}$	1935.1432	1.3681682	I361	1989
$\mathbf{4}$	1920.8109	1.3605698	I361	1990
$\mathbf{5}$	1860.4552	1.3285226	I361	1991
$\mathbf{6}$	1932.6738	1.3881844	I361	1992
$\mathbf{7}$	1963.6331	1.4692636	I361	1993
$\mathbf{8}$	1921.2055	1.4844666	I361	1994
$\mathbf{9}$	1921.0301	1.5463229	I361	1995
$\mathbf{1 0}$	1982.6745	1.4761900	I361	1996
$\mathbf{1 1}$	2148.0000	1.5260400	I361	1997
$\mathbf{1 2}$	2049.0000	1.5114800	I361	1998
$\mathbf{1 3}$	3134.0000	2.3049200	3361	1999
$\mathbf{1 4}$	3341.0000	2.2656500	3361	2000
$\mathbf{1 5}$	4738.0000	2.9203300	3361	2001

Manufacturing sector

NAICS	year	total_cost	quant_index	price
MAN	1997	3062.356	1.373999	2228.791
MAN	1998	3285.677	1.519951	2161.7
MAN	1999	4333.253	2.014493	2151.039
MAN	2000	4404.168	1.897839	2320.623
MAN	2001	6585.495	2.577071	2555.418
MAN	2002	4259.856	1.765701	2412.558
MAN	2003	4005.216	1.480775	2704.811
MAN	2004	3742.877	1.299218	2880.87
MAN	2005	4387.696	1.32016	3323.61
MAN	2006	3989.523	1.14199	3493.482
MAN	2007	4479.381	1.249818	3584.026
MAN	2008	4849.506	1.222089	3968.21
MAN	2009	3472.497	1	3472.497
MAN	2010	3483.168	0.9628227	3617.663
MAN	2011	3113.407	0.829227	3754.59
MAN	2012	3647.99	1.013922	3597.9
MAN	2013	3913.847	1.048001	3734.585
MAN	2014	4449.241	1.128193	3943.687
MAN	2015	3737.494	1.080782	3458.138
MAN	2016	3266.091	0.9977078	3273.595

Creative learning

Why did the statisticians and economists go to the forest?

Limitation of Tornqvist

Equation gives unstable values when
> data has zeros
> missing values
> extreme growth rates from period to period
A quantity near zero, even with a small expenditure share, can greatly affect the index.

General recommendations for hard cases

$>$ Check data tables for zeros or extreme growth rates
\rightarrow Replace outliers or put cap on growth rates
>Address mainly with imputation, smoothing and/or merging of items
$>$ Avoid imputing hard-coded figures such as 0.01 if possible
>After replacing a value, consider rescaling so totals stay the same

Functions to smooth/merge

> One approach is to merge an item with extreme growth rates into a larger group
> Or, user makes imputation based on knowing the context of the data.
> If neither, these functions now under development, can test an input series to see whether an extreme growth rate (like 20:1) is exceeded and adjust outliers minimally to limit those growth rates.

```
steeptest(vector, .05, 20)
steeplimit(vector, .05, 20)
```


Demonstrations

Review

\checkmark-Overview of productivity measures \checkmark-Common Index formulas
 \checkmark-How Tornqvist is used
 \checkmark-Demonstrations

Contact Information

Mike Jadoo / Economist

Peter B. Meyer / Research Economist
Office of Productivity and Technology, U.S. Bureau of Labor Statistics www.bls.gov/mfp 202-691-5601 Jadoo.michael@bls.gov

